

		Mental calculation	Written Calculation	Default for ALL children
Step 1		they will develop an understanding of how numbers above 100. A focus on number bonds, first via practi grounding in these crucial facts, and ensures that al least. They will also have experienced and been taug numbers, and to add/subtract a single digit number 10, and to understand which digit changes and why. from any 2-digit number. The most important applic counting on or back in tens and ones. Children may count in 2s, 3s, 5s and 10s, and will have related this and 10x tables. Engaging in a practical way with the understanding of multiplication, and asking them to	work, so that they are confident in 2 ical hands-on experiences and subs I children leave Y2 knowing the pair ght pairs to 20. Their knowledge of n to/from a 2-digit number. Another im This understanding is extended to a ation of this knowledge is their abili extend this to adding by partitioning s skill to repeated addition. They will concept of repeated addition and th consider how many groups of a give re numbers, and will thus experience	g numbers into tens and ones. Children will be taught to Il have met and begun to learn the associated 2x, 3x, 5x he use of arrays enables children to develop a preliminary en number make a total will introduce them to the idea of e scaling up or down as a further aspect of multiplication
	Addition	Number bonds ('story of' 5, 6, 7, 8, 9 and 10) Count on in ones from a given 2-digit number Add two single-digit numbers Add three single-digit numbers spotting doubles or pairs to 10 Count on in tens from any given 2-digit number Add 10 to any given 2-digit number Use number facts to add single-digit numbers to two-digit numbers, e.g. use 4 + 3 to work out 24 + 3, 34 + 3 Add by putting the larger number first		Pairs with a total of 10 Counting in ones Counting in tens Count on 1 from any given 2-digit number

	Mental calculation	Written Calculation	Default for ALL children
Subtraction	Number bonds ('story of' 5, 6, 7, 8, 9 and 10) Count back in ones from a given 2-digit number Subtract one single-digit number from another Count back in tens from any given 2-digit number Subtract 10 from any given 2-digit number Use number facts to subtract single-digit numbers from two-digit numbers, e.g. use 7 – 2 to work out $27 - 2$, $37 - 2$		Pairs with a total of 10 Counting back in ones from 20 to 0 Counting back in tens from 100 to 0 Count back 1 from any given 2-digit number
Multiplica tion	Begin to count in 2s, 5s and 10s Begin to say what three 5s are by counting in 5s or what four 2s are by counting in 2s, etc. Double numbers to 10		Begin to count in 2s and 10s Double numbers to 5 using fingers
Division	Begin to count in 2s, 5s and 10s Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number.		Begin to count in 2s and 10s Find half of even numbers by sharing

Haughton School Calculation Policy

Updated – September 2022 Review – July 2023

	Mental calculation	Written Calculation	Default for ALL children
Addition	Number bonds – knowing all the pairs of numbers which make all the numbers to 12, and pairs with a total of 20 Count on in ones and tens from any given 2- digit number Add two or three single-digit numbers Add a single-digit number to any 2-digit number using number facts, including bridging multiples of 10. (E.g. 45 + 4, 38 + 7) Add 10 and small multiples of 10 to any given 2-digit number Add any pair of 2-digit numbers		Know pairs of numbers which make each total up to 10 Add two single digit numbers Add a single-digit number to a 2-digit number by counting on in ones Add 10 and small multiples of 10 to a 2-digit number by counting on in tens
Subtraction	Number bonds – knowing all the pairs of numbers which make all the numbers to 12 Count back in ones and tens from any given 2-digit number Subtract a single-digit number from any 2- digit number using number facts, including bridging multiples of 10, e.g. 56 – 3, 53 – 5. Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in tens and ones or by counting up.		Know pairs of numbers which make each total up to 10 Subtract a single-digit number from a 2-digit number by counting back in ones Subtract 10 and small multiples of 10 from a 2-digit number by counting back in tens

Haughton School Calculation Policy

Updated – September 2022 Review – July 2023

	Mental calculation	Written Calculation	Default for ALL children
Multiplication	Count in 2s, 5s and 10s Begin to count in 3s. Begin to understand that multiplication is repeated addition and to use arrays (E.g. 3 x 4 is three rows of 4 dots) Begin to learn the 2x, 3x, 5x and 10x tables, seeing these as 'lots of', e.g. 5 lots of 2, 6 lots of 2, 7 lots of 2, etc. Double numbers up to 20 Begin to double multiples of 5 to 100 Begin to double two-digit numbers less than 50 with 1s digits of 1, 2, 3 4 or 5		Count in 2s, 5s and 10s Begin to use and understand simple arrays, e.g. 2 x 4 is two lots of four buns. Double numbers up to 10 Double multiples of 10 to 50
Division	Count in 2s, 5s and 10s Begin to count in 3s Using fingers, say where a given number is in the 2s, 5s or 10s count. (E.g. 8 is the fourth number when I count in twos.) Relate division to grouping. (E.g. how many groups of five in fifteen?) Halve numbers to 20 Begin to halve numbers to 40 and multiples of 10 to 100 Find $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{3}{4}$ of a quantity of objects and of amounts (whole number answers)		Count in 2s, 5s and 10s Say how many rows in a given array. (E.g. how many rows of 5 in an array of 3 x 5) Halve numbers to 12 Find ¹ / ₂ of amounts

Step 2		value and number facts to add and subtract numbers in or fingers-based methods of the infants. In particular, to become fluent in complementary addition as an accurat methods for adding larger numbers are taught, learned the period during which all the multiplication and divis written methods for multiplying or dividing a 2-digit or multiplication or division with large but friendly number fractions, learning to reduce a fraction to its simplest for	etence in relation to larger numbers nentally and will develop a range of they will learn to add and subtract m ate means of achieving fast and accu- l and consolidated, and written colu- ion facts are thoroughly memorised 3-digit number by as single-digit nu- ers, e.g. when dividing by 5 or multip orm as well as finding non-unit fract	. In addition and subtraction, they are taught to use place strategies to enable them to discard the 'counting in ones' nultiples and near multiples of 10, 100 and 1000, and will urate answers to 3-digit subtractions. Standard written mn subtraction is also introduced. This key stage is also I, including all facts up to the 12 x 12 table. Efficient
	Addition	Know pairs with each total to 20 Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning Add multiples and near multiples of 10 and 100 Perform place value additions without a struggle. (E.g. $300 + 8 + 50 = 358$) Use place value and number facts to add a 1- digit or 2-digit number to a 3-digit number. (E.g. 104 + 56 is 160 since 104+50=154 and 6+4=10 and 676 + 8 is 684 since 8=4+4 and 76+4+4=84) Add pairs of 'friendly' 3-digit numbers, e.g. 320 + 450 Begin to add amounts of money using partitioning.	Use expanded column addition to add two or three 3-digit numbers or three 2- digit numbers Begin to use compact column addition to add numbers with three digits. Begin to add like fractions. (E.g. $3/8 + 1/8 + 1/8$) Recognise fractions that add to 1. (E.g. $1/4 + 3/4$ or $3/5 + 2/5$)	Know pairs of numbers which make each total up to 10, and which total 20 Add two 2-digit numbers by counting on in tens and ones (E.g. 56 + 35 is 56 + 30 and then add the 5) Understand simple place value additions: $200 + 40$ + 5 = 245 Use place value to add multiples of 10 or 100

Subtraction	Know pairs with each total to 20 Subtract any two 2-digit numbers Perform place value subtractions without a struggle. (E.g. $536 - 30 = 506$, etc.) Subtract 2-digit numbers from numbers >100 by counting up. (E.g. $143 - 76$ is done by starting at 76, add 4 (80) then add 20 (100) then add 43 making the difference a total of 67) Subtract multiples and near multiples of 10 and 100 Subtract, when appropriate, by counting back or taking away, using place value and number facts. Find change from £1, £5 and £10.	Use counting up as an informal written strategy for subtracting pairs of three-digit numbers, e.g. 423 - 357 is +3 + 40 +23 = 66 357 360 400 423 Begin to subtract like fractions. (E.g. ⁷ / ₈ - ³ / ₈)	Know pairs of numbers which make each total up to 10, and which total 20 Count up to subtract 2-digit numbers: $72 - 47$ is +3 +10 +10 +2 = 25 47 50 60 70 2 Subtract multiples of 5 from 100 by counting up +5 +60 = 65 35 40 100 Subtract multiples of 10 and 100
Multiplication	Know by heart all the multiplication facts in the $2x$, $3x$, $4x$, $5x$, $8x$ and $10x$ tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental multiplication. (E.g. 30×5 is 15×10) Partition teen numbers to multiply by a single- digit number. (E.g. 3×14 as 3×10 and 3×4) Double numbers up to 50	Use partitioning (grid multiplication) to multiply 2- digit and 3-digit numbers by 'friendly' single digit numbers.	Know by heart the 2x, 3x, 5x and 10x tables Double given tables facts to get others Double numbers up to 25 and multiples of 5 to 50

			-
Division	Know by heart all the division facts derived from the 2x, 3x, 4x, 5x, 8x and 10x tables. Divide whole numbers by 10 or 100 to give whole number answers Recognise that division is not commutative. Use place value and number facts in mental division. (E.g. $84 \div 4$ is half of 42) Divide larger numbers mentally by subtracting the tenth multiple, including those with remainders. (E.g. $57 \div 3$ is $10 + 9$ as $10x3=30$ and $9x3=27$) Halve even numbers to 100, halve odd numbers to 20	Perform divisions just above the 10 th multiple using the written layout and understanding how to give a remainder as a whole number. Find unit fractions of quantities and begin to find non-unit fractions of quantities	Know by heart the division facts derived from the 2x, 3x, 5x and 10x tables Halve even numbers up to 50 and multiples of ten to 100 Perform divisions within the tables including those with remainders, e.g. $38 \div 5$.

Addition	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to £1 Add to the next hundred, pound and whole number. (E.g. 234 + 66 = 300, 3.4 + 0.6 = 4) Perform place value additions without a struggle. (E.g. 300 + 8 + 50 + 4000 = 4358) Add multiples and near multiples of 10, 100 and 1000. Add £1, 10p, 1p to amounts of money Use place value and number facts to add 1-, 2-, 3-and 4-digit numbers where a mental calculation is appropriate'. (E.g. 4004 + 156 by knowing that 6+4=10 and that 4004+150= 4154 so total is 4160)	Column addition for 3-digit and 4-digit numbers Add like fractions, e.g. $3/5 + 4/5$ = $7/5 = 1 2/5$. Be confident with fractions that add to 1 and fraction complements to 1. (E.g. $2/3 + 2 = 1$)	Add any 2-digit numbers by partitioning or counting on Number bonds to 20 Know pairs of multiples of 10 with a total of 100 Add friendly larger numbers using knowledge of place value and number facts Use expanded column addition to add 3-digit numbers
----------	--	---	--

Subtraction	Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place value subtractions without a struggle. (E.g. $4736 - 706 = 4030$, etc.) Subtract multiples and near multiples of 10, 100 and 100 Subtract by counting up. (E.g. $503 - 368$ is done by adding: $368 + 2 + 30 + 100 + 3$ so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts. Subtract £1, 10p, 1p from amounts of money Find change from £10, £20 and £50.	Use expanded column subtraction for 3-digit and 4- digit numbers Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100 E.g. 2002 – 1865 is +5 +30 +102 = 137 1865 1870 1900 2002 Subtract like fractions, e.g. $\frac{1}{4}$ + $\frac{1}{8} = \frac{3}{8}$ Use fractions that add to 1 to find fraction complements to 1, e.g. $1 - \frac{2}{3} = \frac{1}{3}$	Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100. (E.g. $512 - 287$ is done by +3 + 10 + 100 + 100 +12 = 225 287 290 300 400 500 512 67 + ? = 100 + 3 + 30 = 33 67 70
-------------	--	---	---

	Know by heart all the multiplication facts up to 12×12 . Recognise factors up to 12 of two-digit numbers. Multiply whole numbers and one-place decimals by 10, 100, 1000 Multiply multiples of 10, 100, 1000 by single digit numbers. (E.g. 300 x 6 or 4000 x 8) Use understanding of place value and number facts in mental multiplication. (E.g. 36 x 5 is half of 36 x 10 and 50 x 60 = 3000) Partition 2-digit numbers to multiply by a single-digit number mentally. (E.g. 4 x 24 as 4 x 20 and 4 x 4) Multiply near multiples using rounding. (E.g. 33 x 19 as 33 x 20 – 33) Find doubles to double 100 and beyond using partitioning Begin to double amounts of money. (E.g. £35.60 doubled = £71.20.)	Use a vertical written method to multiply a one-digit by a 3- digit number (ladder) Use an efficient written method to multiply a 2-digit number by a number between 10 and 20 by partitioning (grid method)	Know by heart multiplication tables up to 10 x 10 Multiply whole numbers by 10 and 100 Use grid method to multiply a 2-digit or a 3-digit number by a number up to and including 6
--	--	---	---

Division	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by 10, 100 to give whole number answers or answers with one decimal place Divide multiples of 100 by 1-digit numbers using division facts. (E.g. $3200 \div 8 = 400$) Use place value and number facts in mental division. (E.g. $245 \div 20$ is double $245 \div 10$) Divide larger numbers mentally by subtracting the 10^{th} or 20^{th} multiple as appropriate. (E.g. $156 \div 6$ is $20 + 6$ as $20x6=120$ and $6x6=36$) Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money. (E.g. Half of £52.40 = £26.20)	Use a written method to divide a 2-digit or a 3-digit number by a single-digit number. Give remainders as whole numbers. Begin to reduce fractions to their simplest forms. Find unit and non-unit fractions of larger amounts.	Know by heart all the division facts up to 100 ÷ 10. Divide whole numbers by 10 and 100 to give whole number answers or answers with one decimal place Perform divisions just above the 10 th multiple using the written layout and understanding how to give a remainder as a whole number. Find unit fractions of amounts

:	Step 3	Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions. They will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to two decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Efficient and flexible strategies for mental multiplication and division are taught and practised, so that children can perform appropriate calculations even when the numbers are large, such as $40,000 \times 6$ or $40,000 \div 8$. In addition, it is in Y5 and Y6 that children extend their knowledge and confidence in using written algorithms for multiplication and division. Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers, and they will also calculate simple percentages and ratios. Negative numbers will be added and subtracted.
---	-----------	--

Addition	Know numbers bonds to 1 and to the next whole number Add to the next 10 from a decimal number, <i>e.g.</i> 13.6 + 6.4 = 20 Add numbers with two significant digits only, using mental strategies. (E.g. $3.4 + 4.8$ or 23,000 + 47,000) Add one or two-digit multiples of 10, 100, 1000, 10,000 and 100,000. (E.g. $8000 + 7000$ or 600,000 + 700,000) Add near multiples of 10, 100, 1000, 10,000 and 100,000 to other numbers. (E.g. $82,472 + 30,004$) Add decimal numbers which are near multiples of 1 or 10, including money. (<i>E.g.</i> $6.34 + 1.99$ or $£34.59 + £19.95$) Use place value and number facts to add two or more friendly numbers including money and decimals. (E.g. $3 + 8 + 6 + 4 + 7, 0.6 + 0.7 + 0.4, \text{ or } 2,056 + 44$)	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of two-place decimal numbers including amounts of money. Begin to add related fractions using equivalences. (E.g. $\frac{1}{2}$ + $\frac{1}{6} = \frac{3}{6} + \frac{1}{6}$) Choose the most efficient method in any given situation	Add numbers with only 2-digits which are not zeros, e.g. 3.4 + 5.8 Derive swiftly and without any difficulty number bonds to 100 Add friendly large numbers using knowledge of place value and number facts Use expanded column addition to add pairs of 4- and 5-digit numbers

	Subtraction	Subtract numbers with two significant digits only, using mental strategies. (E.g. $6.2 - 4.5$ or 72,000 - 47,000) Subtract one or two-digit multiples of 100, 1000, 10,000 and 100,000. (E.g. $8000 - 3000$ or 600,000 - 200,000) Subtract one or two digit near multiples of 100, 1000, 10,000 and 100,000 from other numbers. (E.g. $82,472 - 30,004$) Subtract decimal numbers which are near multiples of 1 or 10, including money. (E.g. $6\cdot34 - 1\cdot99$ or $\pounds34\cdot59 - \pounds19\cdot95$) Use counting up subtraction, with knowledge of number bonds to 10/100 or £1, as a strategy to perform mental subtraction. (E.g. £10 - £3.45 or 1000 - 782] Recognise fraction complements to 1 and to the next whole number. (E.g. $1^{2}/_{5} + ^{3}/_{5} = 2$) $4 - 5$	Use compact or expanded column subtraction to subtract numbers with up to 5 digits. Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000. Use complementary addition for subtractions of decimals with up to two places incl. amounts of money Begin to subtract related fractions using equivalences. (E.g. $\frac{1}{2} - \frac{1}{6} = \frac{2}{6}$) Choose the most efficient method in any given situation	Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000. (E.g. $3000 - 2387$ is done by +3 + 10 + 600 = 613 2387 2390 2400 3000
--	-------------	---	--	--

Multiplication	Know by heart all the multiplication facts up to 12 x 12. Multiply whole numbers and one-and two-place decimals by 10, 100, 1000, 10,000 Use knowledge of factors and multiples in multiplication. (E.g. 43 x 6 is double 43 x 3, and 28 x 50 is ½ of 28 x 100 = 1400) Use knowledge of place value and rounding in mental multiplication. (E.g. 67 x 199 as 67 x 200 – 67) Use doubling and halving as a strategy in mental multiplication. (E.g. 58 x 5 = half of 58 x 10, and 34 x 4 is 34 doubled twice) Partition 2-digit numbers, including decimals, to multiply by a single-digit number mentally. (E.g. 6 x 27 as 6 x 20 (120) plus 6 x 7 (42) making 162 or 6.3 x 7 as 6 x 7 plus 0.3 x 7) Double amounts of money by partitioning. (E.g. £37.45 doubled = £37 doubled (£74) plus 45p doubled (90p) £74.90)	Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply 3-digit and 4-digit number by a number between 11 and 20 Choose the most efficient method in any given situation Find simple percentages of amounts 9e.g. 10%, 5%, 20%, 155 and 50%) Begin to multiply fractions and mixed numbers by whole numbers ≤ 10 , e.g. $4 \times {}^{2}/{}_{3} = {}^{8}/{}_{3} = 2{}^{2}/{}_{3}$.	Know multiplication tables to 11 x 11 Multiply whole numbers and one-place decimals by 10, 100 and 1000 Use knowledge of factors as aids to mental multiplication. (E.g. 13 x 6 = double 13 x 3 and 23 x 5 is $\frac{1}{2}$ of 23 x 10) Use grid method to multiply numbers with up to 4- digits by one-digit numbers. Use grid method to multiply 2-digit by 2-digit numbers.
----------------	---	--	---

Division	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by 10, 100, 1000, 10,000 to give whole number answers or answers with 1, 2 or 3 decimal places Use doubling and halving as mental division strategies. (E.g. $34 \div 5$ is $(34 \div 10) \times 2)$ Use knowledge of multiples and factors, also tests for divisibility, in mental division. (E.g. 246 $\div 6$ is $123 \div 3$ and we know that 525 divides by 25 and by 3) Halve amounts of money by partitioning. (E.g. Half of £75.40 = half of £75 (37.50) plus half of 40p (20p) which is £37.70) Divide larger numbers mentally by subtracting the 10^{th} or 100^{th} multiple as appropriate. (E.g. $96 \div 6$ is $10 + 6$, as $10 \times 6 = 60$ and $6 \times 6 = 36$; $312 \div 3$ is $100 + 4$ as $100 \times 3 = 300$ and $4 \times 3 =$ 12) Reduce fractions to their simplest form.	Use short division to divide a number with up to 4 digits by a number ≤12. Give remainders as whole numbers or as fractions. Find non-unit fractions of large amounts. Turn improper fractions into mixed numbers and vice versa. Choose the most efficient method in any given situation	Know by heart division facts up to 121 ÷ 11 Divide whole numbers by 10, 100 or 1000 to give answers with up to one decimal place. Use doubling and halving as mental division strategies Use efficient chunking to divide numbers ≤ 1000 by 1-digit numbers. Find unit fractions of 2 and 3-diigt numbers

Know by heart number bonds to 100 and use these to derive related facts. (E.g. $3.46 + 0.54 = 4$) Derive quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able 'in our heads'. (E.g. $34,000 + 8000$.) Add multiples of powers of ten and near multiples of the same. (E.g. $6345 + 199$.) Add negative numbers in a context such as temperature where the numbers make sense. Add two 1-place decimal numbers or two 2- place decimal numbers less than 1 (E.g. $4.5 + 6.3$ or $0.74 + 0.33$) Add positive numbers to negative numbers, e.g. calculate a rise in temperature, or continue a sequence beginning with a negative number	Use column addition to add numbers with up to 5 digits. Use column addition to add decimal numbers with up to 3-digits Add mixed numbers and fractions with different denominators.	Derive swiftly and without difficulty, number bonds to 100 Use place value and number facts to add friendly large or decimal numbers, e.g. 3.4 + 6.6 or 26,000 + 5,400 Use column addition to add numbers with up to 4- digits. Use column addition to add pairs of two-place decimal numbers.

Multiplication	Know by heart all the multiplication facts up to 12 x 12. Multiply whole numbers and decimals with up to three places by 10, 100 or 1000, e.g. 234 x 1000 = 234,000 and 0.23 x 1000 = 230) Identify common factors, common multiples and prime numbers and use factors in mental multiplication. (E.g. 326 x 6 is 652 x 3 which is 1956) Use place value and number facts in mental multiplication. (E.g. 40,000 x 6 = 24,000 and 0.03 x 6 = 0.18) Use doubling and halving as mental multiplication strategies, including to multiply by 2, 4, 8, 5, 20, 50 and 25 (E.g. 28 x 25 is 1/4 of 28 x 100 = 700) Use rounding in mental multiplication. (34 x 19 as $(20 \times 34) - 34)$ Multiply one and two-place decimals by numbers up to and including 10 using place value and partitioning. (E.g. 3.6 x 4 is 12 + 2.4 or 2.53 x 3 is 6 + 1.5 + 0.09) Double decimal numbers with up to 2 places using partitioning <i>e.g.</i> 36.73 doubled is double 36 (72) plus double 0.73 (1.46)	Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply a 2-digit by a number with up to 4 digits Use short multiplication to multiply a 1-digit number by a number with one or two decimal places, including amounts of money. Multiply fractions and mixed numbers by whole numbers. Multiply fractions by proper fractions. Use percentages for comparison and calculate simple percentages.	Know by heart all the multiplication facts up to 12 x 12. Multiply whole numbers and one-and two-place decimals by 10, 100 and 1000. Use an efficient written method to multiply a one-digit or a teens number by a number with up to 4-digits by partitioning (grid method). Multiply a one-place decimal number up to 10 by a number ≤100 using grid method.

Division	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by powers of 10 to give whole number answers or answers with up to three decimal places. Identify common factors, common multiples and prime numbers and use factors in mental division. (E.g. $438 \div 6$ is $219 \div 3$ which is 73) Use tests for divisibility to aid mental calculation. Use doubling and halving as mental division strategies, e.g. to divide by 2, 4, 8, 5, 20 and 25. (E.g. $628 \div 8$ is halved three times: 314 , 157 , 78.5) Divide one and two place decimals by numbers up to and including 10 using place value. (E.g. $2.4 \div 6 = 0.4$ or $0.65 \div 5 = 0.13$, $\pounds 6.33 \div 3 = \pounds 2.11$) Halve decimal numbers with up to 2 places using partitioning <i>e.g. Half of 36.86 is half of 36 (18) plus half of 0.86 (0.43</i>) Know and use equivalence between simple fractions, decimals and percentages, including in different contexts. Recognise a given ratio and reduce a given ratio to its lowest terms.	Use short division to divide a number with up to 4 digits by a 1-digit or a 2-digit number Use long division to divide 3- digit and 4-digit numbers by 'friendly' 2-digit numbers. Give remainders as whole numbers or as fractions or as decimals Divide a one-place or a two- place decimal number by a number ≤ 12 using multiples of the divisors. Divide proper fractions by whole numbers.	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by 10, 100, 1000 to give whole number answers or answers with up to two decimal places. Use efficient chunking involving subtracting powers of 10 times the divisor to divide any number of up to 1000 by a number ≤ 12 . (E.g. $836 \div 11$ as $836 - 770$ (70x11) leaving 66 which is $6x11$. So that we have $70 + 6 = 76$ as the answer). Divide a one-place decimal by a number ≤ 10 using place value and knowledge of division facts.

