Haughton School Calculation Policy
Updated - September 2022
Review - July 2023

|  |  | Mental calculation | Written Calculation | Default for ALL children |
| :---: | :---: | :---: | :---: | :---: |
| Step 1 |  | Children will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, they will develop an understanding of how numbers work, so that they are confident in 2 -digit numbers and beginning to read and say numbers above 100. A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Y2 knowing the pairs of numbers which make all the numbers up to 10 at least. They will also have experienced and been taught pairs to 20 . Their knowledge of number facts enables them to add several single-digit numbers, and to add/subtract a single digit number to/from a 2 -digit number. Another important conceptual tool is their ability to add/subtract 1 or 10, and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of ten to and from any 2 -digit number. The most important application of this knowledge is their ability to add or subtract any pair of 2 -digit numbers by counting on or back in tens and ones. Children may extend this to adding by partitioning numbers into tens and ones. Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will have related this skill to repeated addition. They will have met and begun to learn the associated $2 \mathrm{x}, 3 \mathrm{x}, 5 \mathrm{x}$ and 10x tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. They will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division. Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds. |  |  |
|  |  | Number bonds ('story of' 5, 6, 7, 8, 9 and 10) Count on in ones from a given 2-digit number Add two single-digit numbers Add three single-digit numbers spotting doubles or pairs to 10 Count on in tens from any given 2-digit number <br> Add 10 to any given 2-digit number Use number facts to add single-digit numbers to two-digit numbers, e.g. use $4+3$ to work out $24+3,34+3 \ldots$ <br> Add by putting the larger number first |  | Pairs with a total of 10 <br> Counting in ones Counting in tens Count on 1 from any given 2-digit number |

Updated - September 2022
Review - July 2023


Updated - September 2022
Review - July 2023

|  | Mental calculation | Written Calculation | Default for ALL children |
| :---: | :--- | :--- | :--- |
|  |  | $\begin{array}{l}\text { Number bonds - knowing all the pairs of } \\ \text { numbers which make all the numbers to 12, } \\ \text { and pairs with a total of 20 } \\ \text { Count on in ones and tens from any given 2- } \\ \text { digit number }\end{array}$ |  | \(\left.\begin{array}{l}Know pairs of numbers which make each total up \\

to 10 \\
Add two single digit numbers \\
Add a single-digit number to a 2-digit number by \\
counting on in ones \\
Add 10 and small multiples of 10 to a 2-digit \\
number by counting on in tens\end{array}\right]\)

Updated - September 2022
Review - July 2023


Updated - September 2022
Review - July 2023

| Step |  | Children build on the concrete and conceptual understandings they have gained to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers. In addition and subtraction, they are taught to use place value and number facts to add and subtract numbers mentally and will develop a range of strategies to enable them to discard the 'counting in ones' or fingers-based methods of the infants. In particular, they will learn to add and subtract multiples and near multiples of 10, 100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3-digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced. This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to the $12 \times 12$ table. Efficient written methods for multiplying or dividing a 2-digit or 3-digit number by as single-digit number are taught, as are mental strategies for multiplication or division with large but friendly numbers, e.g. when dividing by 5 or multiplying by 20 . Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of one-place decimals, multiplying and dividing whole numbers by 10 and 100. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Know pairs with each total to 20 <br> Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10 s and 1 s or by using partitioning <br> Add multiples and near multiples of 10 and 100 <br> Perform place value additions without a <br> struggle. (E.g. $300+8+50=358$ ) <br> Use place value and number facts to add a 1digit or 2 -digit number to a 3 -digit number. (E.g. <br> $104+56$ is 160 since $104+50=154$ and $6+4=10$ and $676+8$ is 684 since $8=4+4$ and $76+4+4=84)$ <br> Add pairs of 'friendly' 3 -digit numbers, e.g. 320 $+450$ <br> Begin to add amounts of money using partitioning. | Use expanded column addition to add two or three 3-digit numbers or three 2digit numbers Begin to use compact column addition to add numbers with three digits. <br> Begin to add like fractions. (E.g. $3 / 8+1 / 8+1 / 8$ ) Recognise fractions that add to 1 . (E.g. $1 / 4+3 / 4$ or $3 / 5+2 / 5$ ) | Know pairs of numbers which make each total up to 10 , and which total 20 <br> Add two 2-digit numbers by counting on in tens and ones (E.g. $56+35$ is $56+30$ and then add the 5) <br> Understand simple place value additions: $200+40$ $+5=245$ <br> Use place value to add multiples of 10 or 100 |

Updated - September 2022
Review - July 2023


Updated - September 2022
Review - July 2023


Updated - September 2022
Review - July 2023

Add any two 2-digit numbers by partitioning or counting on
Know by heart/quickly derive number bonds to 100 and to £1
Add to the next hundred, pound and whole number. (E.g. $234+66=300,3.4+0.6=4$ ) Perform place value additions without a struggle. (E.g. $300+8+50+4000=4358$ ) Add multiples and near multiples of 10, 100 and 1000.

Add $£ 1,10$ p, 1 p to amounts of money
Use place value and number facts to add 1-, 2-, 3 -and 4 -digit numbers where a mental calculation is appropriate'. (E.g. $4004+156$ by knowing that $6+4=10$ and that $4004+150=4154$ so total is 4160)

Column addition for 3-digit and 4-digit numbers
Add like fractions, e.g. $3 / 5+4 / 5$ $=7 / 5=1^{2} / 5$.
Be confident with fractions that add to 1 and fraction complements to 1. (E.g. ${ }^{2 / 3}+$ $?=1$ )

Add any 2-digit numbers by partitioning or counting on
Number bonds to 20
Know pairs of multiples of 10 with a total of 100 Add friendly larger numbers using knowledge of place value and number facts
Use expanded column addition to add 3 -digit numbers

Updated - September 2022
Review - July 2023


Updated - September 2022
Review - July 2023


Updated - September 2022
Review - July 2023

Know by heart all the division facts up to $144 \div$ 12.

Divide whole numbers by 10,100 to give whole number answers or answers with one decimal place
Divide multiples of 100 by 1 -digit numbers using division facts. (E.g. $3200 \div 8=400$ )
Use place value and number facts in mental division. (E.g. $245 \div 20$ is double $245 \div 10$ ) Divide larger numbers mentally by subtracting the $10^{\text {th }}$ or $20^{\text {th }}$ multiple as appropriate. (E.g. $156 \div 6$ is $20+6$ as $20 \times 6=120$ and $6 \times 6=36$ ) Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money. (E.g. Half of $£ 52.40=£ 26.20$ )

Use a written method to divide a 2-digit or a 3-digit number by a single-digit number.
Give remainders as whole numbers.
Begin to reduce fractions to their simplest forms. Find unit and non-unit fractions of larger amounts.

Know by heart all the division facts up to $100 \div 10$. Divide whole numbers by 10 and 100 to give whole number answers or answers with one decimal place
Perform divisions just above the $10^{\text {th }}$ multiple using the written layout and understanding how to give a remainder as a whole number.
Find unit fractions of amounts

Updated - September 2022
Review - July 2023

| Step | $\quad$Children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and <br> fractions. They will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 <br> digits and also decimal numbers with up to two decimal places. Mental strategies for adding and subtracting increasingly <br> large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of <br> number facts. Efficient and flexible strategies for mental multiplication and division are taught and practised, so that <br> children can perform appropriate calculations even when the numbers are large, such as 40,000 x 6 or 40,000 $\div 8$. In <br> addition, it is in Y5 and Y6 that children extend their knowledge and confidence in using written algorithms for <br> multiplication and division. Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of <br> children's understanding of these more complicated numbers, and they will also calculate simple percentages and ratios. <br> Negative numbers will be added and subtracted. |
| :---: | :--- |

Updated - September 2022
Review - July 2023

## $\stackrel{\rightharpoonup}{\partial}$ Know numbers bonds to 1 and to the next

 whole number-1 Add to the next 10 from a decimal number, e.g. $13 \cdot 6+6 \cdot 4=20$
Add numbers with two significant digits only, using mental strategies. (E.g. $3.4+4.8$ or $23,000+47,000$ )
Add one or two-digit multiples of 10, 100, 1000, 10,000 and 100,000 . (E.g. $8000+7000$ or $600,000+700,000)$
Add near multiples of 10, 100, 1000, 10,000
and 100,000 to other numbers. (E.g. 82,472 + 30,004)
Add decimal numbers which are near multiples of 1 or 10, including money. (E.g. $6 \cdot 34+1.99$ or $£ 34.59+£ 19.95$ )
Use place value and number facts to add two or more friendly numbers including money and decimals. (E.g. $3+8+6+4+7,0.6+0.7+$ 0.4 , or $2,056+44$ )

Use column addition to add two or three whole numbers with up to 5 digits
Use column addition to add any pair of two-place decimal numbers including amounts of money.
Begin to add related fractions using equivalences. (E.g. ½ $+1 / 6=3 / 6+1 / 6$ )
Choose the most efficient method in any given situation

Add numbers with only 2-digits which are not zeros, e.g. $3.4+5.8$
Derive swiftly and without any difficulty number bonds to 100
Add friendly large numbers using knowledge of place value and number facts
Use expanded column addition to add pairs of 4and 5-digit numbers

Updated - September 2022
Review - July 2023


Use compact or expanded column subtraction to subtract numbers with up to 5 digits.
Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000. Use complementary addition for subtractions of decimals with up to two places incl. amounts of money Begin to subtract related fractions using equivalences. (E.g. $1 / 2-1 / 6=2 / 6$ )

Choose the most efficient method in any given situation

Derive swiftly and without difficulty number bonds to 100
Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000. (E.g. 3000-2387 is done by


Updated - September 2022
Review - July 2023
Know by heart all the multiplication facts up to
$12 \times 12$.
․ Multiply whole numbers and one-and two-place
decimals by $10,100,1000,10,000$
uO!
Use knowledge of factors and multiples in
multiplication. (E.g. $43 \times 6$ is double $43 \times 3$, and
$28 \times 50$ is $1 / 2$ of $28 \times 100=1400$ )
Use knowledge of place value and rounding in
mental multiplication. (E.g. $67 \times 199$ as $67 \times$
200-67)
Use doubling and halving as a strategy in
mental multiplication. (E.g. $58 \times 5=$ half of $58 \times$
10 , and $34 \times 4$ is 34 doubled twice)
Partition 2-digit numbers, including decimals, to
multiply by a single-digit number mentally. (E.g.
$6 \times 27$ as $6 \times 20$ (120) plus $6 \times 7$ (42) making
162 or $6.3 \times 7$ as $6 \times 7$ plus $0.3 \times 7$ )
Double amounts of money by partitioning. (E.g.
$£ 37.45$ doubled $=£ 37$ doubled ( $£ 74$ ) plus 45 p
doubled ( 90 p) $£ 74.90$ )

Use short multiplication to multiply a 1 -digit number by a number with up to 4 digits Use long multiplication to multiply 3-digit and 4-digit number by a number between 11 and 20 Choose the most efficient method in any given situation Find simple percentages of amounts 9e.g. 10\%, 5\%, $20 \%, 155$ and $50 \%$ )
Begin to multiply fractions and mixed numbers by whole numbers $\leq 10$, e.g. $4 \times 2 / 3=$ $8 / 3=2^{2 / 3}$.

Know multiplication tables to $11 \times 11$
Multiply whole numbers and one-place decimals by 10,100 and 1000
Use knowledge of factors as aids to mental multiplication. (E.g. $13 \times 6=$ double $13 \times 3$ and 23 $x 5$ is $1 / 2$ of $23 \times 10$ )
Use grid method to multiply numbers with up to 4digits by one-digit numbers.
Use grid method to multiply 2-digit by 2-digit numbers.

Updated - September 2022
Review - July 2023

```
O. Know by heart all the division facts up to 144 -
12.
% Divide whole numbers by 10, 100, 1000, 10,000
to give whole number answers or answers with
1,2 or 3 decimal places
Use doubling and halving as mental division
strategies. (E.g. 34\div5 is (34\div10) x 2)
Use knowledge of multiples and factors, also
tests for divisibility, in mental division. (E.g. }24
\div6 is 123\div3 and we know that 525 divides by
25 and by 3)
Halve amounts of money by partitioning. (E.g.
Half of £75.40= half of £75 (37.50) plus half of
40p (20p) which is £37.70)
Divide larger numbers mentally by subtracting
the 10 th or 100 th multiple as appropriate. (E.g.
96\div6 is 10+6, as 10\times6=60 and 6 * 6 = 36;
312\div3 is 100+4 as 100 \times 3=300 and 4\times3=
12)
Reduce fractions to their simplest form.
```

Use short division to divide a number with up to 4 digits by a number $\leq 12$.
Give remainders as whole numbers or as fractions. Find non-unit fractions of large amounts.
Turn improper fractions into mixed numbers and vice versa.
Choose the most efficient method in any given situation

Know by heart division facts up to $121 \div 11$
Divide whole numbers by 10,100 or 1000 to give
answers with up to one decimal place.
Use doubling and halving as mental division strategies
Use efficient chunking to divide numbers $\leq 1000$
by 1 -digit numbers.
Find unit fractions of 2 and 3 -diigt numbers

Know by heart number bonds to 100 and use these to derive related facts. (E.g. $3.46+0.54=$ 4)

Derive quickly and without difficulty, number bonds to 1000
Add small and large whole numbers where the use of place value or number facts makes the calculation do-able 'in our heads'. (E.g. 34,000 + 8000.)
Add multiples of powers of ten and near multiples of the same. (E.g. $6345+199$.) Add negative numbers in a context such as temperature where the numbers make sense. Add two 1-place decimal numbers or two 2place decimal numbers less than 1 (E.g. $4.5+$ 6.3 or $0.74+0.33$ )

Add positive numbers to negative numbers, e.g. calculate a rise in temperature, or continue a sequence beginning with a negative number

Use column addition to add numbers with up to 5 digits. Use column addition to add decimal numbers with up to 3-digits
Add mixed numbers and fractions with different denominators.

Derive swiftly and without difficulty, number bonds to 100
Use place value and number facts to add friendly large or decimal numbers, e.g. $3.4+6.6$ or 26,000 $+5,400$
Use column addition to add numbers with up to 4digits.
Use column addition to add pairs of two-place decimal numbers.

Updated - September 2022
Review - July 2023


Updated - September 2022
Review - July 2023

```
12\times12.
ฝ. Multiply whole numbers and decimals with up to
three places by 10, 100 or 1000, e.g. 234 x
1000 =234,000 and 0.23 x 1000=230)
Identify common factors, common multiples and
prime numbers and use factors in mental
multiplication. (E.g. 326 x 6 is 652 < 3 which is
1956)
Use place value and number facts in mental
multiplication. (E.g. 40,000 x 6 =24,000 and
0.03 x 6 = 0.18)
Use doubling and halving as mental
multiplication strategies, including to multiply by
2,4,8,5,20,50 and 25 (E.g. 28 x 25 is 1/4 of 28
x 100=700)
Use rounding in mental multiplication. (34 x 19
as (20\times34)-34)
Multiply one and two-place decimals by
numbers up to and including }10\mathrm{ using place
value and partitioning. (E.g. 3.6 4 4 is 12+2.4
or 2.53\times3 is 6+1.5+0.09)
Double decimal numbers with up to 2 places
using partitioning
e.g. 36.73 doubled is double 36(72) plus
double 0.73 (1.46)
```

Use short multiplication to multiply a 1 -digit number by a number with up to 4 digits Use long multiplication to multiply a 2-digit by a number with up to 4 digits
Use short multiplication to multiply a 1 -digit number by a number with one or two decimal places, including amounts of money. Multiply fractions and mixed numbers by whole numbers. Multiply fractions by proper fractions.
Use percentages for comparison and calculate simple percentages.

Know by heart all the multiplication facts up to 12 x 12.

Multiply whole numbers and one-and two-place decimals by 10, 100 and 1000.
Use an efficient written method to multiply a onedigit or a teens number by a number with up to 4digits by partitioning (grid method).
Multiply a one-place decimal number up to 10 by a number $\leq 100$ using grid method.

Updated - September 2022
Review - July 2023

Know by heart all the division facts up to $144 \div$ 12.

- Divide whole numbers by powers of 10 to give whole number answers or answers with up to three decimal places.
Identify common factors, common multiples and prime numbers and use factors in mental division. (E.g. $438 \div 6$ is $219 \div 3$ which is 73 ) Use tests for divisibility to aid mental calculation.
Use doubling and halving as mental division strategies, e.g. to divide by $2,4,8,5,20$ and 25. (E.g. $628 \div 8$ is halved three times: 314 , 157, 78.5)
Divide one and two place decimals by numbers up to and including 10 using place value. (E.g. $2.4 \div 6=0.4$ or $0.65 \div 5=0.13, £ 6.33 \div 3=$ £2.11)
Halve decimal numbers with up to 2 places using partitioning
e.g. Half of 36.86 is half of 36 (18) plus half of 0.86 (0.43)

Know and use equivalence between simple fractions, decimals and percentages, including in different contexts.
Recognise a given ratio and reduce a given ratio to its lowest terms.

Use short division to divide a number with up to 4 digits by a 1-digit or a 2-digit number Use long division to divide 3digit and 4-digit numbers by 'friendly' 2-digit numbers. Give remainders as whole numbers or as fractions or as decimals
Divide a one-place or a twoplace decimal number by a number $\leq 12$ using multiples of the divisors.
Divide proper fractions by whole numbers.

Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by $10,100,1000$ to give whole number answers or answers with up to two decimal places.
Use efficient chunking involving subtracting powers of 10 times the divisor to divide any number of up to 1000 by a number $\leq 12$.
(E.g. $836 \div 11$ as $836-770(70 \times 11)$ leaving 66 which is $6 \times 11$. So that we have $70+6=76$ as the answer).
Divide a one-place decimal by a number $\leq 10$ using place value and knowledge of division facts.

Updated - September 2022
Review - July 2023

